Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Appl Microbiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609347

RESUMO

AIMS: This study investigated phenotypic and genotypic antimicrobial resistance profiles of Vibrio strains identified from Mytilus galloprovincialis farmed for human consumption in the Adriatic Sea Central Italy. METHODS AND RESULTS: A total of 475 mussels (Mytilus galloprovincialis) were involved in the present study, and culture-dependent microbiological methods permitted to identify a total of 50 Vibrio strains that were tested for antibiotic susceptibility followed by the genetic determinant detections. Antibiograms showed resistance against ampicillin (36.0%), amoxicillin-clavulanic acid (30.0%), gentamycin (14.0%), and imipenem (18.0%). Biomolecular assays amplified a total of 264 antibiotic resistance genes harbored by both susceptible and resistant Vibrio species. Among resistance genes, aacC2 (62.0%) and aadA (58.0%) for aminoglycosides, blaTEM (54.0%) for beta-lactams, qnrS (24.0%) for quinolones, tetD (66.0%) for tetracyclines, and vanB (60.0%) for glycopeptides were mainly amplified by PCR assays. CONCLUSIONS: Vibrio genus is involved in the antibiotic resistance phenomenon diffusion in the aquatic environments, as demonstrated by the harboring of many genetic determinants representing a kind of genetic "dark world".

2.
Microb Pathog ; 190: 106641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588925

RESUMO

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Assuntos
Adjuvantes Imunológicos , Antioxidantes , Bivalves , Kefir , Probióticos , Superóxido Dismutase , Vibrio alginolyticus , Animais , Probióticos/farmacologia , Bivalves/química , Bivalves/microbiologia , Antioxidantes/metabolismo , Kefir/microbiologia , Superóxido Dismutase/metabolismo , Spirulina/química , Malondialdeído/metabolismo , Malondialdeído/análise , Ração Animal , Monofenol Mono-Oxigenase/metabolismo , Suplementos Nutricionais , Fosfatase Alcalina/metabolismo , Muramidase/metabolismo , Vibrioses/prevenção & controle
3.
Int J Biol Macromol ; 264(Pt 2): 130470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453124

RESUMO

LKB1 (liver kinase B1) is a key upstream kinase of AMPK and plays an important role in various cellular activities. While the function and mechanism of LKB1 have been widely reported in the study of tumor, there are few reports on its role in bacterial infectious diseases, especially in shrimp. In the present study, molecular characterization revealed that LvLKB1 has an open reading frame (ORF) of 1266 bp encoding 421 amino acids with a molecular weight of about 48 KDa, including the kinase region, N-terminal regulatory domain and C-terminal regulatory domain. LvLKB1 in hepatopancreas and hemocytes was significantly upregulated after infection with Vibrio alginolyticus (V. alginolyticus). After silencing LvLKB1 gene in Litopenaeus vannamei (L. vannamei) and artificially infecting V. alginolyticus, the survival rate of L. vannamei was significantly decreased. Subsequently, it was found that the expression of inflammatory factors in hepatopancreas and hemocytes of shrimp was up-regulated, and the expression of lipid oxidation factors was decreased after silencing LKB1, leading to the phenomenon of lipid accumulation in hepatopancreas. In order to explore the mechanism, autophagy levels of shrimp were detected after silencing LKB1, which showed that autophagy levels in hepatopancreas and hemocytes were significantly reduced. Further studies conclusively showed that silencing LvLKB1 inhibited AMPK phosphorylation induced by V. alginolyticus infection, thereby activating TOR pathway and inhibiting autophagy in shrimp. These results indicate that LvLKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by V. alginolyticus infection.


Assuntos
Penaeidae , Vibrioses , Animais , Vibrio alginolyticus/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia , Lipídeos , Penaeidae/microbiologia , Imunidade Inata/genética , Hemócitos/metabolismo , Proteínas de Artrópodes/química
4.
Fish Shellfish Immunol ; 148: 109468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432537

RESUMO

Manila clam (Ruditapes philippinarum) is a bivalve species with commercial value, but it is easily infected by pathogenic microorganisms in aquaculture, which restricts the shellfish industry. Notably, the impact of Vibrio alginolyticus on clam culture is obvious. In this study, RNA-seq was performed to analyze clam hepatopancreas tissue in 48 h (challenge group, G48h) and 96 h (challenge group, G96h) after infection with V. alginolyticus and 0 h after injection of PBS (control group, C). The results showed that a total of 1670 differentially expressed genes were detected in the G48h vs C group, and 1427 differentially expressed genes were detected in the G96h vs C group. In addition, KEGG analysis showed that DEGs were significantly enriched in pathways such as Lysosome and Mitophagy. Moreover, 15 immune related DEGs were selected for qRT-PCR analysis to verify the accuracy of RNA-seq, and the results showed that the expression level of DEGs was consistent with that of RNA-seq. Therefore, the results obtained in this study provides a preliminary understanding of the immune defense of R. philippinarum and molecular insights for genetic breeding of V. alginolyticus resistance in Manila clam.


Assuntos
Bivalves , Vibrio , Animais , Vibrio alginolyticus , Vibrio/fisiologia , Perfilação da Expressão Gênica , Imunidade , Bivalves/genética , Transcriptoma
5.
J Fish Dis ; : e13940, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523352

RESUMO

Vibrio alginolyticus is the causative agent of vibriosis, a common bacterial infection in grouper aquaculture that is associated with the development of haemorrhagic and non-haemorrhagic ulcerations on the fish. In the present study, comparative proteome analysis was performed on serum samples from Vibrio-resistant and Vibrio-susceptible grouper. Samples were analysed using high-throughput LC-MS/MS and identified 2770 unique peptides that corresponded to 344 proteins. Subsequent analysis identified 21 proteins that were significantly up-regulated in the resistant group compared to the control and the susceptible groups. Those proteins are associated with immunostimulatory effects, signalling and binding cascade, metabolism, and maintaining tissue integrity and physiological condition. Besides, potential protein biomarkers related to the immune system were identified, which could be associated with the disease-resistant phenotype. These data provide insights into the underlying immune mechanism of hybrid groupers upon Vibrio sp. infection.

6.
Gene ; 905: 148188, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38278336

RESUMO

Rhizoma coptidis, a Chinese herbal medicine widely used to treat various bacterial infections, has the potential to develop antibiotic substitutes to overcome the drug resistance of Vibrio alginolyticus. To study the inhibitory effect of R. coptidis on V. alginolyticus, we sequenced the transcriptomes of three groups of samples of wild-type V. alginolyticus (CK) and V. alginolyticus, which were stressed by 5 mg/mL R. coptidis for 2 h (RC_2 h) and 4 h (RC_4 h). CK was compared with RC_2 h and RC_4 h, respectively, and a total of 1565 differentially expressed genes (DEGs) (988 up-regulated and 577 down-regulated) and 1737 DEGs (1152 up-regulated and 585 down-regulated) were identified. Comparing RC_2 h with RC_4 h, 156 DEGs (114 up-regulated and 42 down-regulated) were identified. The ability of biofilm formation and motility of V. alginolyticus altered upon with different concentrations of R. coptidis. Interestingly, relative expression patterns of virulence genes appeared statistically significantly varied, upon different concentrations of R. coptidis extract. DEGs were annotated to the Gene Ontology (GO) database for function enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the results showed that the main enriched pathways, was those related to the virulence of V. alginolyticus. This study provides a new perspective for understanding the complex pathogenic mechanism of V. alginolyticus. R. coptidis could potnetially be used as alternative or complimnetary to antibiotics to treat infections after further research.


Assuntos
Antineoplásicos , Vibrioses , Humanos , Vibrio alginolyticus/genética , Virulência/genética , Vibrioses/tratamento farmacológico , Perfilação da Expressão Gênica , Transcriptoma
7.
Chemosphere ; 349: 140775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013024

RESUMO

Sulfamethoxazole (SMZ) is commonly used in aquaculture to treat bacterial infections, but its long-term residual properties in natural water can pose a direct threat to aquatic animals. This study is to investigate the effects of continuous exposure to SMZ on mud crabs (Scylla paramamosain) at four different concentrations (0, 10, 100, and 1000 ng/L) that reflect the range found in natural aquatic environments. The results confirmed that SMZ exposure reduced the expression levels of genes related to the innate immunity in mud crabs, including JAK, Astakine, TLR, and Crustin. It also stimulated oxidative stress, caused the production of reactive oxygen species and lower activities of antioxidant enzymes such as peroxidase, superoxide dismutase, catalase, and glutathione. SMZ exposure damaged the DNA of crab hemocytes and hepatopancreas tissue, and reduced the phagocytosis, ultimately leading to a decreased survival rates of mud crabs infected with Vibrio alginolyticus. These findings demonstrate that SMZ exposure has immunotoxic effects on mud crabs' innate immunity and reduces the ability to resist pathogen infections.


Assuntos
Braquiúros , Animais , Braquiúros/metabolismo , Antioxidantes/metabolismo , Sulfametoxazol/toxicidade , Sulfametoxazol/metabolismo , Imunidade Inata , Fagocitose , Proteínas de Artrópodes/genética
8.
Fish Shellfish Immunol ; 144: 109301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110106

RESUMO

Mytilus unguiculatus is an important economic bivalve species with wide consumption and aquaculture value. Disease is one of the primary limiting factors in mussel aquaculture, thus understanding the response of different tissues of M. unguiculatus to pathogens is crucial for disease prevention and control. In this study, we investigated the physiological and transcriptomic responses of the gills, adductor muscle, and mantle of M. unguiculatus infected with Vibrio alginolyticus. The results showed that V. alginolyticus infection caused inflammation and tissue structure changes in the gill, adductor muscle and mantle of M. unguiculatus. Meanwhile, the activities of superoxide dismutase and catalase in the three tissues increased, while the total antioxidant capacity decreased, suggesting that M. unguiculatus have an activated defense mechanism against infection-induced oxidative stress, despite a compromised total antioxidant capacity. Transcriptomic studies reveal that infected M. unguiculatus exhibits upregulation of endocytosis, lysosome activity, cellular apoptosis, and immune-related signaling pathways, indicating that M. unguiculatus responds to pathogen invasion by upregulating efferocytosis. Compared with the gill and adductor muscle, the mantle had a higher level of mytimycin, mytilin and myticin, and the three tissues also increased the expression of mytimycin to cope with the invasion of pathogens. In addition, the analysis of genes related to taste transduction pathways and muscle contraction and relaxation found that after infection with V. alginolyticus, M. unguiculatus may reduce appetite by inhibiting taste transduction in the gill, while improving muscle contraction of the adductor muscle and keeping the shell closed, to resist further invasion of pathogens and reduce the risk of pathogen transmission in the population.


Assuntos
Mytilus , Vibrioses , Vibrio , Animais , Mytilus/genética , Vibrio alginolyticus/fisiologia , Antioxidantes , Vibrioses/veterinária , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
9.
Dev Comp Immunol ; 152: 105122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104703

RESUMO

An increasing number of evidences have shown that invertebrate taxa can be primed to produce immune memory to resist the secondary infection of pathogens, which was considered as a viable option to protect invertebrates from pathogens. In this work, we compared the protective effect of several different immune priming methods on the Vibrio alginolyticus secondary infection of the Crassostrea gigas. The results showed that C. gigas primed with live V. alginolyticus had higher ROS level, which led to hemocytes necrosis and higher mortality rate in the later stage. Low-dose of formalin-inactivated V. alginolyticus (including 5 × 104 CFU/mL and 5 × 105 CFU/mL) elicited appropriate immune response in C. gigas, protecting C. gigas from V. alginolyticus infection. Immersion with 5 × 104 CFU/mL formalin-inactivated V. alginolyticus was performed to prime C. gigas immunity in the trans-generational immune priming. Trans-generational immune priming significantly increased the resistance of larvae to various Vibrio species. Overall, these results suggested that low-dose of formalin-inactivated V. alginolyticus can protect C. gigas from secondary infection and confer broad-spectrum Vibrio resistance on offspring. This work provided valuable information toward a new direction for the protection of C. gigas from Vibrio infection.


Assuntos
Coinfecção , Crassostrea , Vibrioses , Vibrio , Animais , Vibrio alginolyticus/fisiologia , Formaldeído , Hemócitos
10.
Front Cell Infect Microbiol ; 13: 1265917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076457

RESUMO

Vibrio alginolyticus, one of the prevalently harmful Vibrio species found in the ocean, causes significant economic damage in the shrimp farming industry. Its flagellum serves as a crucial virulence factor in the invasion of host organisms. However, the processes of bacteria flagella recognition and activation of the downstream immune system in shrimp remain unclear. To enhance comprehension of this, a ΔflhG strain was created by in-frame deletion of the flhG gene in V. alginolyticus strain HN08155. Then we utilized the transcriptome analysis to examine the different immune responses in Litopenaeus vannamei hepatopancreas after being infected with the wild type and the mutant strains. The results showed that the ΔflhG strain, unlike the wild type, lost its ability to regulate flagella numbers negatively and displayed multiple flagella. When infected with the hyperflagella-type strain, the RNA-seq revealed the upregulation of several immune-related genes in the shrimp hepatopancreas. Notably, two C-type lectins (CTLs), namely galactose-specific lectin nattectin and macrophage mannose receptor 1, and the TNF receptor-associated factor (TRAF) 6 gene were upregulated significantly. These findings suggested that C-type lectins were potentially involved in flagella recognition in shrimp and the immune system was activated through the TRAF6 pathway after flagella detection by CTLs.


Assuntos
Hepatopâncreas , Vibrio alginolyticus , Animais , Vibrio alginolyticus/genética , Imunidade Inata/genética , Perfilação da Expressão Gênica , Flagelos/genética , Lectinas Tipo C/genética
11.
BMC Vet Res ; 19(1): 277, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104092

RESUMO

BACKGROUND: Parasitic and bacterial co-infections have been associated with increasing fish mortalities and severe economic losses in aquaculture through the past three decades. The aim of this study was to evaluate the oxidative stress, histopathology, and immune gene expression profile of gilthead sea bream (Sparus aurata) co-infected with Ergasilus sieboldi and Vibrio alginolyticus. RESULTS: Vibrio alginolyticus and Ergasilus sieboldi were identified using 16 S rRNA and 28 S rRNA sequencing, respectively. The collagenase virulence gene was found in all Vibrio alginolyticus isolates, and the multiple antimicrobial resistance index ranged from 0.286 to 0.857. Oxidant-antioxidant parameters in the gills, skin, and muscles of naturally infected fish revealed increased lipid peroxidation levels and a decrease in catalase and glutathione antioxidant activities. Moreover, naturally co-infected gilthead sea bream exhibited substantial up-regulation of il-1ß, tnf-α, and cyp1a1. Ergasilus sieboldi encircled gill lamellae with its second antennae, exhibited severe gill architectural deformation with extensive eosinophilic granular cell infiltration. Vibrio alginolyticus infection caused skin and muscle necrosis in gilthead sea bream. CONCLUSION: This study described some details about the gill, skin and muscle tissue defense mechanisms of gilthead sea bream against Ergasilus sieboldi and Vibrio alginolyticus co-infections. The prevalence of co-infections was 100%, and no resistant fish were detected. These co-infections imbalance the health status of the fish by hampering the oxidant-antioxidant mechanisms and proinflammatory/inflammatory immune genes to a more detrimental side. Our results suggest that simultaneous screening for bacterial and parasitic pathogens should be considered.


Assuntos
Coinfecção , Doenças dos Peixes , Dourada , Vibrioses , Animais , Vibrio alginolyticus , Antioxidantes , Coinfecção/veterinária , Vibrioses/veterinária , Expressão Gênica , Estresse Oxidativo , Oxidantes , Doenças dos Peixes/microbiologia
12.
Microorganisms ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138037

RESUMO

The type VI secretion system (T6SS) is a large secretory device, widely found in Gram-negative bacteria, which plays important roles in virulence, bacterial competition, and environmental adaptation. Vibrio alginolyticus (V. alginolyticus) is an opportunistic pathogen that causes vibriosis in aquaculture animals. V. alginolyticus possesses two type VI secretion systems (named the T6SS1 and T6SS2), but their functions remain largely unclear. In this paper, the roles of the core component of the T6SS2 cluster of V. alginolyticus HY9901, hemolysin-coregulated protein2 coding gene hcp2, are reported. Deletion of hcp2 clearly impaired the swarming motility, adhesive capacity, and pathogenicity of V. alginolyticus against zebrafish. Furthermore, transmission electron microscopy (TEM) found that the abnormal morphology of flagellum filament in the hcp2 mutant strain could be partially restored by hcp2 complementarity. By proteomic and RT-qPCR analysis, we confirmed that the expression levels of flagellar flagellin and assembly-associated proteins were remarkably decreased in an hcp2 mutant strain, compared with the wild-type strain, and could be partially restored with a supply of hcp2. Accordingly, hcp2 had a positive influence on the transcription of flagellar regulons rpoN, rpoS, and fliA; this was verified by RT-qPCR. Taken together, these results suggested that hcp2 was involved in mediating the motility, adhesion, and pathogenicity of Vibrio alginolyticus through positively impacting its flagellar system.

13.
Microorganisms ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38138062

RESUMO

The Pacific oyster Crassostrea gigas is one of the most important cultured marine species around the world. Production of Pacific oysters in China has depended primarily on hatchery produced seeds since 2016, with the successful introduction and development of triploid oysters. However, the seed supply of Pacific oysters is threatened by recurring mass mortality events in recent years. Vibriosis is the most commonly encountered disease associated with intensive oyster culture in hatcheries and nurseries. Vibrio alginolyticus and Bacillus hwajinpoensis were the two strains with pathogenic and probiotic effects, respectively, identified during the Pacific oyster larvae production. To monitor their colonization process in Pacific oyster larvae, green fluorescent protein (GFP) and red fluorescent protein (RFP) were labeled to the pathogenic V. alginolyticus and the probiotic B. hwajinpoensis stain, respectively. The pathogenic and probiotic effects of the two strains during the colonization process were then assessed. Stabile expression of GFP and RFP were observed in corresponding stains, and the capabilities of growth, biofilm formation and in vitro adhesion of GFP- and RFP- tagged stains were not significantly different from those of the wild-type strains. Usage of probiotics of 105 CFU/mL significantly inhibited the growth of pathogenic V. alginolyticus and reduced the mortality of D-sharped larvae. Both the pathogenic and probiotic strains employed a similar route to enter and colonize the oyster larvae, which indicates that competing with pathogens for binding and spreading sites were one of the mechanisms of B. hwajinpoensis to provide the probiotic effects to oyster larvae. In summary, employment of fluorescence-tagged pathogenic and probiotic strains simultaneously provides us with an excellent bioassay model to investigate the potential mechanisms of probiotics.

14.
World J Microbiol Biotechnol ; 40(2): 51, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146036

RESUMO

Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.


Assuntos
Recombinases , Vibrio alginolyticus , Animais , Humanos , Camundongos , Recombinases/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
15.
Microbiol Spectr ; 11(6): e0268023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966200

RESUMO

IMPORTANCE: Transmission of V. alginolyticus occurs opportunistically through direct seawater exposure and is a function of its abundance in the environment. Like other Vibrio spp., V. alginolyticus are considered conditionally rare taxa in marine waters, with populations capable of forming large, short-lived blooms under specific environmental conditions, which remain poorly defined. Prior research has established the importance of temperature and salinity as the major determinants of Vibrio geographical and temporal range. However, bloom formation can be strongly influenced by other factors that may be more episodic and localized, such as changes in iron availability. Here we confirm the broad temperature and salinity tolerance of V. alginolyticus and demonstrate the importance of iron supplementation as a key factor for growth in the absence of thermal or osmotic stress. The results of this research highlight the importance of episodic iron input as a crucial metric to consider for the assessment of V. alginolyticus risk.


Assuntos
Ferro , Vibrio alginolyticus , Vibrio alginolyticus/genética
16.
Front Microbiol ; 14: 1258415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808288

RESUMO

The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus.

17.
Fish Shellfish Immunol ; 141: 109091, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722444

RESUMO

The increasing experimental evidence suggests that there are some forms of specific acquired immunity in invertebrates, in which Toll-like receptors (TLRs) play vital roles in activating innate and adaptive immunity and have been comprehensively investigated in mammalian species. Yet, the immune mechanisms underlying TLR mediation in mollusks remain obscure. In this study, we identified a TLR13 gene in the pearl oyster Pinctada fucata for the first time and named it PfTLR13 which consists of a 5'-untranslated terminal region (5'-UTR) of 543 bp, an open reading frame (ORF) of 2667 bp, and a 3'-UTR of 729 bp. We found that PfTLR13 mRNA was expressed in all tissues examined, with the highest level in the gills. The expression of PfTLR13 in the gills of oysters exposed to Vibrio alginolyticus or pathogen-associated molecular patterns (PAMPs) (including LPS, PGN, and poly(I:C)) was significantly higher than in the control group. Interestingly, the immune response to the first stimulation was weaker than the response to the second stimulation, suggesting that the primary stimulation may lead to immune priming of TLR in pearl oysters, similar to acquired immunity in vertebrates. Furthermore, we found that PfTLR13 expression was differentially associated with allograft and xenograft in the pearl oyster P. fucata, with the highest expression levels observed at 12 h post-allograft and 24 h post-xenograft. Overall, our findings provide new insights into the immune mechanisms underlying TLR mediation in mollusks and suggest that PfTLR13 may play a crucial role in the specific acquired immunity of pearl oysters.


Assuntos
Pinctada , Humanos , Animais , Pinctada/genética , Sequência de Aminoácidos , Clonagem Molecular , Imunidade Inata/genética , Imunidade Adaptativa , Receptores Toll-Like/genética , Mamíferos
18.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626834

RESUMO

Mesenchymal stem cells extracted from adipose tissue are particularly promising given the ease of harvest by standard liposuction and reduced donor site morbidity. This study proposes a novel enzymatic method for isolating stem cells using Vibrio alginolyticus collagenase, obtaining a high-quality product in a reduced time. Initially, the enzyme concentration and incubation time were studied by comparing cellular yield, proliferation, and clonogenic capacities. The optimized protocol was phenotypically characterized, and its ability to differentiate in the mesodermal lineages was evaluated. Subsequently, that protocol was compared with two Clostridium histolyticum-based collagenases, and other tests for cellular integrity were performed to evaluate the enzyme's effect on expanded cells. The best results showed that using a concentration of 3.6 mg/mL Vibrio alginolyticus collagenase allows extracting stem cells from adipose tissue after 20 min of enzymatic reaction like those obtained with Clostridium histolyticum-based collagenases after 45 min. Moreover, the extracted cells with Vibrio alginolyticus collagenase presented the phenotypic characteristics of stem cells that remain after culture conditions. Finally, it was seen that Vibrio alginolyticus collagenase does not reduce the vitality of expanded cells as Clostridium histolyticum-based collagenase does. These findings suggest that Vibrio alginolyticus collagenase has great potential in regenerative medicine, given its degradation selectivity by protecting vital structures for tissue restructuration.


Assuntos
Colagenases , Vibrio alginolyticus , Projetos de Pesquisa , Células-Tronco , Tecido Adiposo
19.
Biotechnol Lett ; 45(10): 1279-1291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37505340

RESUMO

Scallops have become an important aquaculture species in China because they contain high-quality protein, and scallops are important health food that combines multiple effects and high economic benefits. However, scallop aquaculture is perennially threatened by various pathogenic Vibrio species, leading to great economic losses. We obtained a strain of pathogenic bacteria, identified as Vibrio alginolyticus, from the diseased Azumapecten farreri in the scallop farming area of Huangdao District in 2018, and V. alginolyticus is one of the major shellfish pathogens. We showed that V. alginolyticus was isolated and identified as a pathogen in A. farreri for the first time. In this study, we evaluated its morphology and performed a phylogenetic analysis based on 16S rRNA gene sequencing. In addition, we performed a preliminary analysis of its pathogenic mechanisms. The Hfq protein in V. alginolyticus is an important RNA-binding protein in the quorum-sensing system that not only affects the sensitivity of Vibrio to environmental stress but also regulates a variety of functions, such as cell membrane formation, motility, and virulence towards the host. However, its effect on the pathogenesis of V. alginolyticus to A. farreri is unclear. To further investigate the pathogenic mechanism of the Hfq protein in V. alginolyticus to A. farreri, we used the CRISPR-Cas9 system to target and deplete the hfq gene fragment in V. alginolyticus and obtained the mutant strain V. ΔHfq-. We found that the peripheral flagellum of the mutant strain was lost, which reduced the motility of V. alginolyticus. Therefore, the deletion of target genes by the CRISPR/Cas9 genome editing system confirmed that the Hfq protein played a key role in reducing the ability of V. alginolyticus to infect A. farreri. In conclusion, our current findings provided valuable insights into the healthy culture of scallops.


Assuntos
Sistemas CRISPR-Cas , Vibrio alginolyticus , Vibrio alginolyticus/genética , Filogenia , RNA Ribossômico 16S , Tecnologia
20.
Front Microbiol ; 14: 1178575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333647

RESUMO

Introduction: Vibriosis causes enormous economic losses of marine fish. The present study investigated the intestinal microbial response to acute infection of half-smooth tongue sole with different-dose Vibrio alginolyticus within 72 h by metagenomic sequencing. Methods: The inoculation amount of V. alginolyticus for the control, low-dose, moderate-dose, and high-dose groups were 0, 8.5 × 101, 8.5 × 104, and 8.5 × 107 cells/g respectively, the infected fish were farmed in an automatic seawater circulation system under a relatively stable temperature, dissolved oxygen and photoperiod, and 3 ~ 6 intestinal samples per group with high-quality DNA assay were used for metagenomics analysis. Results: The acute infections with V. alginolyticus at high, medium, and low doses caused the change of different-type leukocytes at 24 h, whereas the joint action of monocytes and neutrophils to cope with the pathogen infection only occurred in the high-dose group at 72 h. The metagenomic results suggest that a high-dose V. alginolyticus infection can significantly alter the intestinal microbiota, decrease the microbial α-diversity, and increase the bacteria from Vibrio and Shewanella, including various potential pathogens at 24 h. High-abundance species of potential pathogens such as V. harveyii, V. parahaemolyticus, V. cholerae, V. vulnificus, and V. scophthalmi exhibited significant positive correlations with V. alginolyticus. The function analysis revealed that the high-dose inflection group could increase the genes closely related to pathogen infection, involved in cell motility, cell wall/ membrane/envelope biogenesis, material transport and metabolism, and the pathways of quorum sensing, biofilm formation, flagellar assembly, bacterial chemotaxis, virulence factors and antibiotic resistances mainly from Vibrios within 72 h. Discussion: It indicates that the half-smooth tongue sole is highly likely to be a secondary infection with intestinal potential pathogens, especially species from Vibrio and that the disease could become even more complicated because of the accumulation and transfer of antibiotic-resistance genes in intestinal bacteria during the process of V. alginolyticus intensified infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...